
L A& Maths Mechs, Vol. 61, No. 4, pp. 627632.1997 
Q 1997 Elsevier Science Ltd 

PII: 5002144928(97)00080-4 
All rights nserved. Printed in Great Britain 

0021-89z8D7 524.00+0.00 

MEMBRANE DEFORMATION BY A MOVING LOAD-#- 

G. G. DENISOV and V. V. NOVIKOV 
Nixhnii Novgorcd 

(Receiwd 20 December 1995) 

Small steady deformations (displacements) of the elements of a homogeneous membrane caused by a [force] load moving uniformly 
along one of the axes with velocity exceeding the velocity of propagation of elastic waves in the membrane are investigated The 
cases of a load distributed along the other axis and concentrated loa& are considered. Deformations for an unbounded membrane, 
a half-plane and an unbounded strip are analyzed. A method is used which enables a new independent variable to be introduced 
and enables a problem equivalent to the action of a moving load or a system of moving loads on an unbounded or half-bounded 
string to be obtained. Problems with central symmetry are also considered. Namely, it is assumed that an undeformable disc is 
attached rigidly to an unbounded membrane and a concentrated [force] load is moving at constant velocity around a circle with 
the same centre as the disk. An investigation of the problem in polar coordinates enables it to be reduced to the general form 
of the problem of the deformation of a string. By applying the appropriate results obtained earlier for a string [l] the following 
qualitative result is established: there arevalues of the velocity of motion of the load such that no work is performed in overcoming 
wave resistance forces in the steady state., which is equivalent to the absence of such forces. Q 1997 Elsevier Science Ltd. 
All rights resewed. 

Small displacements u(x, y, t) of a membrane perpendicular to its plane (x, y) satisfy the equation 

where T is the tension of the membrane andp is its surface density. 
Suppose that a load distributed with constant densityfwith respect tox in an interval Ix I < 6 moves 

along the y axis with constant velocity u greater than the velocity of propagation of a wave a in the 
membrane. Under this load 

where the minus sign corresponds to pressing the membrane from above. 
We will be concerned with the steady state of membrane deformations. Thus, it will be convenient 

to consider problem (l), (2) in a new variablesx, { = y - US, that is, in a moving system of coordinates, 
where the membrane deformation pattern is independent of time. After these transformations problem 
(l), (2) takes the form 

a; 5=+0 

I 
-cpo = -f / T, lxla 6 

Z~=-o 
= yr(x.0) = 

0, Id> 6 

In this formulation the problem of membrane deformations is identical with the well-known problem 
of the vibrations of an infinite string (e.g. [2]) without initial deformation, whose points 1 x 1 d 6 move 
with the same initial velocity. By a formal substitution of 5 for at in the problem for a string we arrive 
at problem (3), so we can use the known solution. 

In a system of coordinates with the moving load the deflection of the membrane is given by 
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4x, 5) = - ib 7W~a 
It follows that u(x, E,) is given in the form of two “waves” 

u(x, 5) = U’(x + b() - 0(x - b@ 

0, p<-s 
WP) = -q+,(P+6)/(2b), lf3lc 6 

-q@/b, p>S 

In the (x, 5) plane we take the characteristics passing through the end points of the intervalA (Fig. 
1). In the problem in question they have the form x + bt = Cr, x - bE, = C,, where Ci and C2 are 
constants. The characteristics shown in Fig. 1 divide the (x, 5) plane into domains 1 and 2, in which 
there are no deformations, and domains 3-6, where deformations exist. In domain 6 the deformations 
are the same for all points, while in 3-5 they are linear inx. In Fig. 1 we also show the profiles of the 
membrane for various 5 = const. 

Relative to the fixed system of coordinates (connected with the membrane) we can observe that, as 
time elapses, large domains of the membrane become deformed during the motion of the load, and 
work is performed by the load. This can be explained by the fact that the force distributed over the 
intervalA is inclined in the opposite direction to the motion, i.e. it has a horizontal componentfi. It 
follows that there is a force of equal magnitude resisting the motion of the load. 

To computefr we turn to Fig. 1. The forces acting in the intervalM3 are 

Ti =Teg, T, = -T(cosaeg + sin ox,), f = fier; - fie, 

per unit length. Here eg and e,, are unit vectors. In a time interval cft the forces give rise to the following 
variation of the momentum of an element of the membrane of length dc = u df 

(T, + Tr + f)dt = p(vz - v,)& 

VI =- vet, v2 = - u(cos atq + sin ore,) 

Hence we find that fi = T( 1 - cos a)/b’, f2 = T sin a/b2. For a 4 1 we have fi = Ta22b2 = fb2/(2T). 
The resistive force can also be computed from the energy flux through the line x = const and 

the given velocity. As the length of AB decreases, the load approaching a concentrated one, and it 

Fig. 1. 
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becomes impossible to determine the position off, and hence the componentfi, by the above method. 
In this case fi must be computed from the energy flux. 

In the special case of a point load, which will be considered below, 0(/3) has the form of the unit 
function and the membrane deformation pattern simplifies (Fig. 2). Inside the hatched area the 
membrane is deflected, the displacement being the same at each point. Outside this area there is no 
deflection. 

When the membrane rests of an elastic support, its deformation will no longer be so simple, but the 
boundary of the perturbed domain (the shape of the characteristics) remains unchanged. 

The results of a study of wave propagation in a half-bounded string [l] can also be applied to the 
problem of membrane deformation. Suppose that the membrane is bounded by the straight line 
x = -x0(x0 > 0), which is represented by a line with shading. In this case problem (3) must be 
supplemented by the condition that the membrane is not subject to any displacements on the boundary: 
u = (-x0, y, t) = 0. The mathematical method which enables the problem to be solved, involves the 
change from a bounded membrane to an unbounded one in which the condition under the load (3) is 
extended symmetrically about the straight line x = -x0 but not evenly to the whole straight line 5 = 0. 

In the case of a point load the deformations of a bounded membrane will be the same as those of 
an unbounded membrane in the domain x 2 -x0 subject to a load given at the point x = 0, 5 = 0 and 
a load of opposite sign at the pointx = -2x,,, E, = 0 symmetrical aboutx = -x0. The membrane deforma- 
tion pattern is shown in Fig. 3. In the hatched domain the membrane is subject to negative deflection 
of constant magnitude and remains unperturbed in any other region in the half-plane. 

When the load system moves along the membrane boundaryx = -x0, the deformation pattern can 
be obtained as the superposition of the deformations of each of the loads, having the form shown 
in Fig. 3. In the case when there is an infinite system of identical loads distributed with period 2x& 
(Fig. 4, in which the loads are shown by circles with crosses inside), the deformations are the same at 
every point of the membrane forx > 0. Relative to the fixed system of coordinates (x, y) the membrane 

\ 

Fig. 2. Fig. 3. 

Fig. 4. 
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deformation pattern will also be invariant for n > 0. Therefore there is no energy flux through any line 
x = const > 0, i.e. no work is performed by the moving system of loads. In other words, in this case the 
system of loads moving parallel to the “wall” x = 0, 5 = 0 does not experience any resistance. 

Finally, we consider a strip-shaped membrane 1 x 1 c x0 subject to a moving point load at the same 
distance to the boundaries. This problem can also be reduced to the problem of the deformations of 
an unbounded membrane acted upon by a system of loads along the straight line 5 = 0. A load is applied 
at x = 0, and the remaining “loads” appear as a result of the uneven reflection of the conditions at the 
point x = 0 about the boundaries of the membrane and subsequent second-order uneven reflections, 
third-order reflections, and so on. This leads to the deformation pattern of the strip shown in Fig. 5. 
The membrane is divided into rhomboidal domains. Outside these domains there are no deformations, 
while inside them u is constant and the deflection sign alternates. 

Now suppose that two identical loads separated by a distance 2xdb move with constant velocity along 
the central line of the membrane. Each of these loads separately gives rise to the deformations shown 
in Fig. 5. The superposition principle holds due to the linearity of the system. Under the joint action 
of the two loads, only the rhomboidal domain between the loads will be perturbed (Fig. 6). Outside 
this domain the deflection u vanishes. By the physical arguments presented above we conclude that no 
work is performed jointly by the loads placed in this way as they move along the strip without meeting 
any resistance. A similar situation occurs for two loads separated by a distance equal to an odd multiple 
of the diagonal of the rhombus, (Zn + 1)2xdb, except that there will be 2n + 1 rhomboidal domains 
between the loads in which the membrane is subject to perturbation. 

The deformation of the strip shown in Fig. 6 can also be achieved for an unbounded membrane using 
a system of four identical loads of different directions. The rhombus is formed by the characteristics 
corresponding to the loads at its vertices (see Fig. 7, where the directions of the loads are indicated by 
circles with dots and crosses inside). 

Fig. 5. 

Fig. 6. Fig. 7. 
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Now we consider a membrane of unbounded radius attached to an undeformable disc of radius rs, 
A point load moves at constant velocity u around a circle concentric with the disc on the membrane at 
a distance R. from its centre. 

The equation for the deflection u of the membrane has the form 

a2u 2 a2u 
c 

I au I a2u 
,,2=a s+;z+TTqT 

1 
(4) 

in polar coordinates r, cp. Since we are dealing with steady-state membrane deformations, it will be 
convenient to consider the problem in a system of coordinates rotating about the axis through the centre 
of the disc, in which the load is stationary (o = 
deflection is u = u(r, 8 = cp - wt). 

u/R. being the angular velocity of the system) and the 

Equation (4) becomes 

2a2U 
' Z+rar 

2 2 a2u &+(1-k r +=o 

Here we have changed to the length scale rs, i.e. 1 c r < 00, k = w,ja, retaining the symbols for the 
deflection and the variable r. 

At the point r = rr = R./q,, 9 = 0 where the load is applied 

%I::: = 
{ 

0, IA>0 
-cpo, x=0 

The solution must satisfy the condition ~(1, Cl) = 0 on the edge of the disc. 
We assume that k 2 1, i.e. IQ. (5) is hyperbolic for each point of the membrane. To solve problem 

(S), (6) we apply the method of characteristics (see, for example, [3]). Unlike the problems considered 
before, in which the loads moved along straight lines (characteristics), here the two families of charac- 
teristics are curvilinear and have the form 

t\l = -8 + c(kr) = const, q2 = 0 + c(h) = const 

(((x)=@T-arccos(l/x)) 

In (5) we change to the variables TJ~ and 772. Starting from the solution of problem (3), we find that 
the function 

utr*w = WI, I- wl2 1. WJ = 1 
0, c<o 

-‘pop r>o 
satisfies this equation outside the boundary of the perturbed domain. 

In the idealized case of a point load the membrane deformation has a discontinuity at the boundary 
of the domain. This flaw can be removed by considering a load distributed over a finite interval, which 
ensures a continuous passage between the domains of the membrane with different kinds of deformation, 
as in the case of a load moving along a straight line. 

The domain where the membrane is perturbed is bounded by two characteristics starting from (r., 
0) which have the form of an untwisting curve (qi = const) and a twisting curve (r12 = const) up to 

when the characteristic (r12 = const) reaches the disc r = 1 (Fig. 8). 
The reflection phenomenon must be used to obtain the complete pattern of membrane deforma- 

tions. For 8 > O. the expression for the characteristic has the form 

-8 + C(kr) = -29, + cm* ) 

For 0, < x the membrane deformation is shown in Fig. 8. It is negative and has the same magnitude 
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Fig. 8. 
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Fig. 9. Fig. 10. 

at each point of the hatched domain. For R < e0 c 2a the deformation pattern is shown in Fig. 9. In 
the domain adjoining the disc there is no deformation. In other domains it is negative. In the sector 
including the point where the load is applied the deformation is twice as large as outside this sector 
(the dense hatching in Fig. 9). Apart from those considered above, other situations are possible when 
the characteristic (TJ~ = const) starting from (r*, 0) reaches the disc after one, two, or more revolutions 
about it ((3, > 2x). A common feature in all cases (including those in Figs 8 and 9) is the presence of 
domains in 8 with different forms of deformation for any fixed r. 

The case of reflection at the point El,-, = x, when the reflected characteristic and the characteristic rll 
= &(b*) starting from (r*, 0) coincide, deserves to be considered separately. This leads to the membrane 
deformation pattern shown in Fig. 10. For r > r* the membrane deflection is constant at each point for 
any 0. Physically this means that there is no energy flux through any curve surrounding the unperturbed 
domain, that is, no work is performed by the load. 

A similar situation occurs for Cl0 = 375 . . . , (2n + 1)x, . . . also. This corresponds to one, two, etc. 
revolutions of the characteristic about the disc before it reaches the circle r = 1. From the condition 
Cl0 = (2n + 1)~ for the estimates of U, we find that 

It follows that for the given position I= of the load a discrete spectrum of velocities exists, for which 
no work is performed by the moving load, i.e. the motion does not meet any resistance. Another 
interpretation of the expression for U, is that for a given w there is a denumerable set of circles r*,, = 
~~WZU/CI.Y~ such that no work is performed by a load moving around them. Here we would like to point 
out the analogy with the steady electron orbits in the quantum theory of atomic structure, which also 
do not involve any energy radiation during the motion. 

The effect obtained above is a result of the interaction between the perturbation generated by the 
load and the perturbation reflected from the boundary. For this to happen, at least two loads are 
necessary in the case of rectilinear motion, while one load is sufficient in the case of circular motion. 
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